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ABSTRACT:

We generalize Deitchman’s guerrilla warfare model to account for trade-off between in-
telligence (‘bits’) and firepower (‘shots’). Intelligent targeting leads to aimed fire; absence
of intelligence leads to unaimed fire, dependent on targets’ density. We propose a new
Lanchester-type model that mixes aimed and unaimed fire, the balance between these be-
ing determined by quality of information. We derive the model’s conserved quantity, and
use it to analyze the trade-off between investments in intelligence and in firepower—for
example, in counterinsurgency operations.
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1 Introduction

Good intelligence is key for effective combat operations. If a shooter knows exactly the loca-

tion and state of his targets, he can accurately target them with effective aimed fire. Absent

such information, the shooter is essentially ‘shooting in the dark’—utilizing unaimed fire

whose effectiveness depends on the density of the targets. Arguably, such unaimed fire is

less effective than aimed fire, and it may also result in substantial unintended collateral dam-

age. At its simplest, the balance between aimed and unaimed fire boils down to the trade-off

between situational awareness (‘bits’) and firepower (‘shots’).

Our purpose in this paper is to write down and analyze a simple, prototypical system of two

coupled differential equations which mixes aimed and unaimed fire, in the sense of Lanch-

ester’s models. It is perhaps surprising that this has not been done before. A step towards

it is Deitchman’s guerrilla warfare model [1], an asymmetric variant of Lanchester’s models

[2] in which aimed fire from guerrilla forces is opposed by unaimed fire from conventional

forces. Deitchman’s model was extended by Schaffer [3], who used the model to suggest new

military hardware. The idea of modeling the trade-off between firepower and intelligence in

a Lanchester setting was first suggested by Schreiber [4], albeit in a somewhat different con-

text. Schreiber’s model uses a reciprocal switching function between aimed and unaimed fire,

whereas ours has simple linear interpolation. The main resulting difference between the two

approaches is in their behaviour as the battle is scaled up: higher engaged numbers result in
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a shift towards aimed fire in the Schreiber model and towards unaimed fire in ours.

Our model captures the dynamics of a perennial problem of combat, which recurs in dif-

ferent contexts through the ages: finding the best trade-off between rate and accuracy of fire.

This trade-off concerns both the optimal use of single weapons—archery, anti-aircraft fire, bat-

tleship gunnery and musketry from its inception to the modern day—and finding the correct

weapons mix, such as SAMs and flak against aircraft, or depth charges and torpedos against

submarines. After an initial analysis of the model we specialize, for simplicity and without

much loss of generality, to the situation in which only one side has this mix of fire and thus

faces the trade-off problem, while the other can aim all of its fire. Although our results are

applicable wherever the rate/accuracy trade-off problem bites, we choose to illustrate it in

the context of counterinsurgency (COIN) operations.

We assume that in COIN war it is straightforward for the insurgents to identify state forces,

so that all insurgent fire is aimed. In fact we could equally have made it unaimed; the point

is that only the state, with the problem of distinguishing insurgents from civilians, faces the

bits vs shots trade-off problem. Assuming that the resources for both capabilities are derived

from the same pot (e.g. defense budget) the question is how to allocate the resources between

them. Typically, in COIN settings, the state forces are confronted by relatively small armed

groups, diffused in the population, which are ill-equipped and poorly trained. In terms of

physical net assessment, insurgents are no match for state forces, at least not in the early

stages of the insurgency. For example, in September 2011, the estimated number of insurgents

in Syria was around 10,000 people [5], while the Syrian armed forces (active, reserve and

paramilitary personnel) were estimated at over 700,000 soldiers [6]. The key advantage of

the insurgents is their elusiveness and invisibility while blended into the civilian population,

which make it difficult for state forces to identify insurgent targets and execute effective COIN

operations. Thus, while intelligence is a key component in any conflict situation, it is critical in

COIN operations. The problem of the state is how to divide limited COIN resources between

gathering information about the insurgents and accumulating firepower that can effectively

engage them.

There have been many attempts to model insurgencies as dynamical systems. Descriptive

models have addressed the effect of civilian collateral casualties generated by the state [7]

and by the insurgents [8] on public response and, consequently, on the fate of the insurgency,

the impact of collective memory on popular behavior towards the state and the insurgents

[9], and the spatial dynamics of such conflicts [10]. Berman et al. model COIN as a three-

way contest between violent insurgents, a state seeking to minimize violence, and civilians

deciding whether to share information with the state [11]. A related paper compares two

possible COIN tactics —‘fire’ (high violence) and ‘water’ (low violence)—using optimal con-

trol techniques [12]. Bohorquez et al. reveal, in an empirical study, some unique patterns

regarding the size and timing distributions of insurgencies [13], which may be explained by
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notions of coalescence and fragmentation of insurgent groups. The dynamical problems of

intelligence collection itself are treated by Kaplan and collaborators [14], while Schaffer has

introduced an updated model which contrasts 21st century insurgency with Vietnam [15].

For recent overviews of the literature on mathematical modeling of intelligence and warfare

see [16] and [17], respectively. In this note, however, we do not attempt to deal with dynam-

ical non-physical variables such as psychological and social effects in COIN. Our intention

is to construct and analyze no more than a homogeneous model of attrition, with all of the

simplifications that this implies. In Epstein’s categorization of reasons to model [18], ours is

to illustrate the core dynamics of the trade-off in combat attrition between two parameters:

rate of fire, and intelligence. Important questions such as how popular opinion shifts over

time, and how it impacts upon the evolution and outcome of a conflict, are dealt with in

[7, 8, 9, 10, 11, 12].

In the next section we extend Deitchman’s classical model for the case of partial intelligence

(on both sides) and obtain the conserved quantity. In the rest of the paper we focus on the

asymmetrical COIN situation. In Section 4 we discuss the trade-off between bits and shots

when cost information is unavailable. In Section 5 we present two constrained optimization

models when the costs of intelligence and firepower are known and the budget is either con-

strained or is to be minimized. We show that the two optimization problems produce the

same optimal solution. Summary and conclusions are presented in Section 6.

2 The Generalized Deitchman Model

The core of the generalized model is a pair of parameters that interpolate aimed and unaimed

fire, representing the intelligence levels—hereafter called ‘intel’—of the two forces. The val-

ues of these parameter range between 0 (no intel—shooting in the dark, unaimed fire) and 1

(perfect intel—all fire is aimed). In this section we obtain and interpret the conserved quantity

of such a mixed engagement.

Let the positive real variables B(t) and R(t) represent the sizes of the Blue and Red forces

respectively, and β and ρ denote their per-unit aimed-fire hit-rates, so that the Lanchester

aimed-fire model is

Ḃ = −ρR , Ṙ = −βB , (1)

where dots denote time-derivatives. Famously this system conserves βB2 − ρR2, resulting in

Lanchester’s ‘square law’. The Deitchman guerrilla model [1] mixes aimed fire by Red with

unaimed fire by Blue, so that

.
B = −ρR, (2)
.
R = −β

BR

NR
.
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Note that rather than introduce a single parameter for unaimed fire (which must necessarily

have different dimensions than that for aimed fire) we retain β but introduce a new fixed

parameter NR, with the same dimensions as R and B, which parametrizes the density effect of

unaimed fire. The Deitchman model conserves 1
2βB

2−ρNRR, so that Blue’s fighting strength

is square-law while Red’s is linear-law, with Blue suffering a further disadvantage from the

factor of 1/2.

Our generalized Deitchman model introduces intel parameters µ and ν for Blue and Red,

and is

.
B = −ρR(ν + (1− ν)B/NB), (3)
.
R = −βB(µ+ (1− µ)R/NR).

Notice that Deitchman’s model is obtained when µ = 0 and ν = 1.

Analogously to elementary Lanchester theory, we compute the conserved quantity Q for

this system by dividing one equation by the other:

dB

dR
=

ρR(ν + (1− ν)B/NB)

βB(µ+ (1− µ)R/NR)
. (4)

Separating variables and computing partial fractions we obtain the relationship

βNB

(1− ν)

(

1− 1

1 + 1−ν
ν

B
NB

)

dB =
ρNR

(1− µ)

(

1− 1

1 + 1−µ
µ

R
NR

)

dR (5)

between differentials, and then, by integrating, we find that the quantity

Q :=
βNB

(1− ν)

(

B − νNB

1− ν
log

(

1 +
1− ν

ν

B

NB

))

− ρNR

(1− µ)

(

R− µNR

1− µ
log

(

1 +
1− µ

µ

R

NR

))

(6)

is constant throughout the battle. This expression interpolates between Lanchester linear and

square laws, just as it should: in the µ, ν → 0 limit the second, logarithmic term in each

bracket vanishes and we have Q = βNBB − ρNRR, the linear law, while in the µ, ν → 1

limit, and after expanding the logarithm as a Taylor series, we have Q = 1
2βB

2 − 1
2ρR

2, the

square law. The mixed limit ν → 1, µ → 0 gives the conserved quantity 1
2βB

2 − ρNRR of the

Deitchman model. We discuss these limits in more detail in the next section.

Blue’s goal is to maximize Q over B, β and µ, Red’s to minimize it over R, ρ and ν. In the

Lanchester limits this is simple, since Q takes the form Q = f(NB , B, β) − f(NR, R, ρ). So

Blue (say) seeks to maximize f , independent of Red’s choices, and an increase in its forces

B by a factor k is equivalent to an increase in its hit-rate β by a factor k for the Linear Law

and k2 for the Square Law. In our model, however, the situation is more complex, for now

Q = f(NB, B, β, ν) − f(NR, R, ρ, µ), and Blue’s and Red’s optimal strategies are no longer

independent, because ν is chosen by Red and µ by Blue. So Blue has to maximize Q given

that Red is trying to minimize it, and vice versa. This moves us into the fascinating territory
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of diffferential games [19]—but a full minimax analysis rapidly becomes unwieldy and unil-

luminating (in part because there is no canonical cost function), and is certainly beyond the

scope of this note. Rather we proceed in the next section with a fuller analysis of the situation

in which one side is able to aim all of its fire. The analysis is quite general, but is presented in

the context of COIN.

3 COIN Model

Consider a COIN situation where B = G are the state (‘Governmant’) forces and R = I are the

‘Insurgents’, who are embedded in a civilian population of size P . The insurgents have perfect

situational awareness regarding the state forces and therefore can utilize effective aimed fire,

ν = 1. The state forces, on the other hand, who do not have this perfect awareness, have to

utilize a fraction (1−µ) of their firepower for unaimed engagement, where only a fraction I
P of

this firepower is effective. If the hit rates are α and γ for the insurgents and state, respectively,

then (3) becomes

Ġ = −αI (7)

İ = −γG

(

µ+ (1− µ)
I

P

)

,

and the parity condition, for a fully-annihilating endgame at which G = I = 0, is

γG2
0 =

2αP

1− µ

[

I0 −
µP

1− µ
log

(

1 +
1− µ

µ

I0
P

)]

(8)

where G0 and I0 are the initial force sizes of the state and the insurgency respectively.

We observe immediately from (8) that, in terms of the trade-off between hit-rate and force

size, the state fights a Lanchester square law war: its fighting strength, the left-hand side of

(8), is γG2
0.

Defining κ := α/γ, y := G0/P, x := I0/P and z := 1−µ
µ x we obtain the parity condition in

the simpler form

y2 =
2κµ

(1− µ)2
[z − log (1 + z)] . (9)

This has the expected limits. When z is small, which occurs if µ ≃ 1 (mostly aimed fire) or

I ≪ P , one uses the Taylor series log(1 + z) = z − z2/2 + . . . to obtain

y2 ≃ κµ

(1− µ)2
z2 =

κ

µ
x2, (10)

which results in a generalized square law

(

G0

I0

)2

≃ κ

µ
. (11)
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At the other extreme, when µ → 0 we have z → ∞ and log(1 + z)/z → 0. The right-hand side

of (9) then approaches 2κx, just as in the Deitchman, µ = 0 case.

In Figure 1 we plot the phase portrait with direction field and parity curve. Under the gen-

eralized square law (11), the parity curve is linear, so that for a clear departure from linearity

z must not be too small. Even if the insurgency is concentrated in a sparsely populated area,

for example P = 3I0 (that is, x = 1/3), we only see departure from linearity at very small

values of µ. Figure 1 uses x ≤ 1/3, κ = 1, µ = 0.01. For µ > 0.1 the parity curve is practically

indistinguishable from a straight line.

With limited endurance, where the state tolerates attrition up to G0 −G and the insurgents

surrender when their attrition reaches I0 − I (where G , I > 0), the parity condition becomes

γ

2
[G2

0 −G
2
] =

αP

1− µ

(

I0 − I − µP

1− µ
log

[

1 + 1−µ
µP I0

1 + 1−µ
µP I

])

. (12)

Figure 1: Phase portrait of generalized Deitchman model for κ = 1,
µ = 0.01. The parity curve separates the two forces’ victory regimes.

4 Firepower-Intel Trade-off in COIN

In many modes of combat there is natural trade-off between firepower and intelligence that

is manifested in fire rate: shoot now or wait for more accurate targeting information? Waiting

for better intelligence (higher µ) results in larger inter-firing time and therefore lower γ. This

trade-off is significant in particular in COIN situations because of the high cost of collateral

damage.

Recall (as noted above) that in a square-law fight a proportionate improvement in numbers
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is twice as valuable as the same proportionate improvement in unit hit-rate [2]. We formalize

this with the logarithmic derivative,

dλ := d(log F )/d(log λ) =
λ

F

dF

dλ
, (13)

where λ is some parameter and we take F to be the ratio of fighting strengths for the model,

here

F :=
1
2γG

2
0

αP 2µ
(1−µ)2

[z − log(1 + z)]
, (14)

with z = 1−µ
µ

I0
P = 1−µ

µ x as before. Then we find immediately that dγ = 1, dG0
= 2, dα = −1:

increasing numbers gives twice the improvement of increasing hit-rate or reducing vulnera-

bility, the standard square law result.

For intel, though, the logarithmic derivative is not appropriate, essentially because γ ∈
(0,∞) whereas µ ∈ [0, 1]. If instead we define a simple Dµ := d

dµ log F , we find

Dµ =
1

µ

(

1− x

µ

[

2

z
− z

(z + 1)(z − log(1 + z))

])

. (15)

How does Dµ behave? As µ → 1, Dµ → 1
µ(1−

2x
3 ). As µ → 0 we find that Dµ has a logarithmic

divergence; its behavior is Dµ ∼ log z
x − x+1

x +O(log z/z).

In Figure 2a we plot Dµ(µ) for a representative x, here x = 1/3 as before. The crucial value

is that at which Dµ = 1, since it is here that crossover with dγ ≡ 1 occurs. In Fig. 2a this

critical µc is approximately 0.7. In Figure 2b we plot µc as a function of 1/x for integer values

1 through 20.

Figure 2: Plots of (a)Dµ against µ for x = 1/3, (b) crit-
ical values µc, at which Dµc

= 1, for 1/x = 1, . . . , 20.

So intel, which enables a small additional percentage of fire to be targeted accurately, is

of greater value than an equivalent proportional increase in γ or G2 provided µ < µc. The
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operational lesson is that when intel is poor, it is better to turn a percentage of your untargeted

fire into intelligent fire than it is to increase hit-rate by the same percentage. When intel is

already high the opposite is true. This crossover happens at high values of µ, with µc → 1 as

x → 0: for example, if x = 1/3 then µc ≃ 0.72. That is, if two-thirds of your untargeted fire

goes astray, then more bits are better than more shots until nearly three-quarters of your fire

is intelligent.

5 The Cost of COIN

The state wishes to reduce the insurgency, and the question is how to achieve the correct

balance between intel and firepower efforts. As we noted above, our model is fundamentally

Lanchester-like: it already combines lethality γ and numbers G0, and thereby the trade-off

between them, in the form γG2
0. So we suppose now that the cost of COIN operations is linear

in both efforts, the combined firepower γG2
0 and intel µ. That is,

C(COIN) = c1γG
2
0 + c2µ , (16)

and the trade-off between γ and µ is investigated by holding G0 fixed. Such a cost function

might naturally be extended to more general monotonic functions of γ, G0 and µ, but we do

not consider this here.

We consider two optimization problems. First, we minimize the total cost of conducting

COIN operations subject to the constraint that the state does not lose the conflict, initially

for a campaign of annihilation and then when there is limited loss toleration on both sides.

Second, we maximize the force advantage (left-hand side minus right-hand of (8) when the

forces are not at parity) subject to a fixed budget constraint.

5.1 Minimizing Cost

To simplify the model we first assume a full-annihilation case where G = I = 0. The objec-

tive now is to minimize c1γG
2
0 + c2µ subject to the parity condition in (8). Substituting γG2

0

computed from (8) in the cost function above we have

C(µ) = c2µ+ c1
2αP

(1− µ)

[

I0 −
µP

1− µ
log

(

1 +
1− µ

µ

I0
P

)]

. (17)

Recall that x = I0
P is the relative initial inaccuracy of unintelligent fire. Define r = c2

c1αI20
, the

intel-to-firepower cost ratio divided by (twice) the insurgent firepower at square law parity.

Then

C(µ) = 2αc1P
2fx,r(µ) , (18)
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where

fx,r(µ) =
µrx2

2
+

x

(1− µ)
− µ

(1− µ)2
log

(

1 +
1− µ

µ
x

)

. (19)

Our task is to find the value of µ (in the interval 0 ≤ µ ≤ 1) which minimizes fx,r(µ), for

0 < x < 1 and r > 0.

First, note that fx,r(µ) → x and f ′

x,r(µ) → −∞ as µ → 0. Thus the minimum is always

at a strictly-positive value of µ: however expensive intel may be, it is always best to have at

least a little of it. (This might seem somewhat counterintuitive since, if x = 1, targeted and

untargeted fire are equivalent initially, making any spend on intel initially wasteful. But note

that, even if x = I0/P = 1 initially, I/P will become less than one during the battle and will

become small towards its end, when intel will become crucial.)

At the other end of the interval fx,r(1) = x2(r+1)
2 and f ′

x,r(1) = x3

3 + x2(r−1)
2 (via a se-

ries expansion of the logarithm and a little algebra). Thus (since we observe that f is either

monotone or unimodal) the minimum cost is found at the end of the interval, µ = 1, when

r ≤ 1− 2x
3 . That is, other things equal, if intelligence is cheap enough then it is always better

to acquire it in full capability. Since x ≤ 1 necessarily, if r ≤ 1/3 then this applies regardless

of the signature value x.

For r > 1 − 2x
3 the minimum is interior, 0 < µmin < 1, and our task is to understand how

its location varies with x and r. An analytic solution is not illuminating. Rather we begin in

Figure 3 by plotting a typical curve, here for x = 1/3, r = 5.

Figure 3: Scaled cost function f(µ)
plotted against µ for x = 1/3, r = 5.

The minimum, here at about µ = 0.25, decreases with increasing x or r. In Figure 4a, we

generalize Fig. 3 to give a plot of µmin, still with x = 1/3, for integer values of r from 1 to 10.

9



Note that for r = 1 this minimum occurs at about 0.86; we saw above that when r ≤ 7/9 (that

is, r = 1 − 2x/3 with x = 1/3) the minimum reaches µ = 1. The value at r = 5 is the µmin of

Fig. 3.

In Figure 4b we generalize further to a plot of µmin as a function of r (again for integers from

1 to 10) and1/x (also integers from 1 to 10). Fig. 4a is the section at 1/x = 3. All calculations

were performed using Maple 14.

Figure 4: Plots of µmin (a) as a function of r for x = 1/3, (b) as a function of r and 1/x.

5.2 Limited endurance

Next assume that each side has limited endurance, which results in the parity condition given

in (12). Defining x = I
P and r̄ = r

1−G
2
/G2

0

1−I
2
/I2

0

we obtain from (12) and (16) that

C(µ) =
2αc1P

2

1−G
2
/G2

0

(fx,r(µ)− fx,r(µ)) . (20)

If we assume that each side has the same tolerated proportion of losses then r̄ = r and the

analysis of (20) becomes more tractable. First, we observe that µ = 1 minimizes (20) when

r ≤ 1 − 2
3
x2+xx+x2

x+x , a lower threshold than in the case of unlimited endurance where x = 0.

This means that limited loss toleration shifts the balance towards heavier weight on firepower

versus intel.

For an alternate scenario, suppose that Ī = 0 (the insurgency continues until its anni-

hilation) but the state has limited loss toleration. Then µ = 1 minimzes (20) whenever

r̄ ≤ 1 − 2x/3, and the cost range for which full intel is optimal increases with the state’s

inability to tolerate losses.

10



When x → x (almost no toleration of losses), then, setting x = (1− ǫ)x, we have

fx,r(µ)− fx,r(µ) ≃ ǫx2
(

µr +
1

µ+ (1− µ)x

)

(21)

and

µmin =















1 r < 1− x

1√
r(1−x)

− x
1−x 1− x ≤ r ≤ 1−x

x2

0 r > 1−x
x2 .

(22)

At x = 1 the solution is µmin = 0: there is no initial difference between the effectiveness of

aimed and of unaimed fire, and thus no value in intel.

Thus, whatever the loss toleration, for imperfectly-targeted fire (x < 1) if intel is cheap

enough (that is, if r is low enough) then full intel is optimal. As loss toleration falls, this

‘cheap enough’ threshold also falls, from r = 1 − 2
3x in a war of annihilation to r = 1 − x for

minimal toleration of losses. If the state’s unaimed fire is very poorly targeted (x ≪ 1) then

the threshold is approximately r = 1, independent of loss toleration.

When full intel is not optimal, we can compare limited loss toleration with the annihilating

case. Figure 5a shows the plot of µmin against r, still with x = 1/3 and analogous to the

(x̄ = 0) annihilating case in Fig. 4a, but now with x̄ = 1/5. Figure 5b shows the difference

in µmin between the limited loss toleration case and the annihilating case—that is, the curve

of Fig. 4a minus that of Fig. 5a. As was mentioned above, we observe that, compared to

annihilation, limited loss toleration results in lower optimal values for intel.

Figure 5: (a) plot of µmin for limited losses x̄ = 1/5, (b)
difference ∆µmin between x̄ = 1/5 and annihilating case.
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5.3 Maximizing force advantage

Here we return to Ḡ = Ī = 0, the war of annihilation. Suppose that, rather than the previ-

ous problem of choosing µ to minimize the cost of a marginal win, we instead choose µ to

maximize the firepower advantage (the difference between left- and right-hand sides of (8))

available at a given cost C = c1γG
2
0 + c2µ.

Thus we need to find the value of µ which maximizes

C − c2µ

c1
− 2αP 2

1− µ

[

x− µ

1− µ
log

(

1 +
1− µ

µ
x

)]

,

or (equivalently) which minimizes

2αP 2fx,r(µ).

But this is precisely the same problem, with the same solution, as in sub-section 5.1. It makes

no difference whether the state wishes to minimize the cost of a bare win, or to maximize

its force advantage (and thereby minimize its losses) for a given cost outlay. Either way, the

optimum level of intel is the same.

6 Conclusions and Operational Lessons

We have written down and analyzed a variant of Lanchester’s models that mixes aimed and

unaimed fire by linear interpolation. This allowed us to model, in the simplest possible set-

ting, the trade-off between targeting and firing rate which is a crucial component of the oper-

ational use of many weapons systems.

As an application, we examined this trade-off in the context of counterinsurgent warfare,

in which state forces target an insurgency with a mix of aimed (well-targeted, ‘intelligent’)

and unaimed (random, ‘unintelligent’) fire. In contrast to other recent dynamical-systems

models of insurgent war (e.g. [7, 12]), we included no psychological variables, parameters or

feedbacks, no dynamics of popular opinion, no game theory. This was a purely attritional

model, with all the acknowledged deficiencies of these, in which the question was posed only

at its simplest: which, for various parameter regimes, is more likely to lead to a state victory,

‘bits’—better intelligence—or ‘shots’—increased firepower?

Even in this context, of attrition and annihilation, in which no account was taken of the hu-

man (and, in the end, political) costs of random violence, intelligence emerges as remarkably

valuable. First, whether from the point of view of minimizing cost or of maximizing force

advantage (both in section 5), it is always the case that if intel is sufficiently cheap then a force

can never have too much of it: perfect intel is the most effective option. This is true whether in

a battle of annihilation or of limited loss toleration, although this ‘sufficiently cheap’ thresh-
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old is reduced in the latter case. Estimates of realistic values of our cost ratio r would be

difficult to justify because this type of data is typically classified. But, for a given cost ratio, it

is clear that the optimal intel level increases rapidly as the accuracy of targeting x decreases.

Even without attempting a cost analysis, one can still compare intel with hit-rate and num-

bers (section 4). In our model, the state is fighting a square law battle, and a proportionate

increase is twice as valuable in numbers as in hit-rate. But an (absolute) increase in intel is

more valuable than a proportionate increase in (hit rate)× (numbers)2 for most combinations

of intel µ and accuracy x. This is our result at its starkest: bits are better than shots for all

points below the curve in Fig. 2b, and this likely covers most realistic values of the parame-

ters. Absent accurate estimates of these, and if the state has no strong reason to believe that its

intel is already excellent (µ is close to 1) and its unaimed fire not too random (say x > 1/2), it

should assume that more intel is the most cost-effective military option, independent of other

considerations.

Finally, future work on dynamic combat models should focus more on psychological and

social effects such as modeling the ’bandwagon’ effect, which captures how people are mobi-

lized to support or oppose a certain side in the conflict, in the presence of media-controlled

public information. Also, as mentioned in Section 2, the case where the two sides face the bits-

versus-shots dilemma naturally leads to a game-theoretic setting that may also be a subject

for future research.
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